This topic covers how to graph basic functions and apply transformations to those graphs. Students will learn how translations, reflections, stretches, and compressions modify the appearance of function graphs. Understanding graph behavior helps with interpreting equations and modeling real-world situations.
f(x) = x
, x^2
, |x|
, \sqrt{x}
, and 1/x
.f(x) + c
: Upf(x) - c
: Downf(x + c)
: Leftf(x - c)
: Right
-f(x)
: Reflect over x-axisf(-x)
: Reflect over y-axis
af(x)
: Vertical stretch if a > 1
; compression if 0 < a < 1
f(bx)
: Horizontal compression if b > 1
; stretch if 0 < b < 1
y = 0
for x-intercept, x = 0
for y-intercept.f(-x) = f(x)
f(-x) = -f(x)
Problem: Describe the transformation of f(x) = -(x - 2)^2 + 3
from the parent function f(x) = x^2
.
Step 1: Recognize structure: f(x) = a(x - h)^2 + k
is vertex form.
Step 2: Identify the transformations:
- (x - 2)
: Shift right 2
- + 3
: Shift up 3
- -
sign: Reflect over x-axis
Final Answer: Reflect over the x-axis, shift right 2 units, and up 3 units.