The derivative measures how a function changes — it's the slope of a curve at any point. This topic introduces what a derivative is, how it’s defined, and the fundamental rules that allow you to compute derivatives of common functions.
f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}
f'(x)
, dy/dx
, D[f(x)]
\frac{d}{dx}(x^n) = nx^{n-1}
\frac{d}{dx}(c) = 0
\frac{d}{dx}(c \cdot f(x)) = c \cdot f'(x)
\frac{d}{dx}(f \pm g) = f' \pm g'
\frac{d}{dx}(x^n) = nx^{n-1}
\frac{d}{dx}(\sin x) = \cos x
; \frac{d}{dx}(\cos x) = -\sin x
\frac{d}{dx}(e^x) = e^x
; \frac{d}{dx}(\ln x) = 1/x
f(x) = 5x^3 - 2x + 7
Step 1: Use the power rule: nx^{n-1}
\frac{d}{dx}(5x^3) = 15x^2
\frac{d}{dx}(-2x) = -2
\frac{d}{dx}(7) = 0
Final Answer: f'(x) = 15x^2 - 2
f(x) = x^2
Step 1: Use the formula: f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}
Step 2: Compute f(x+h) = (x + h)^2 = x^2 + 2xh + h^2
Step 3: f(x+h) - f(x) = x^2 + 2xh + h^2 - x^2 = 2xh + h^2
Step 4: Divide by h
: \frac{2xh + h^2}{h} = 2x + h
Step 5: Take the limit as h → 0
: 2x
Final Answer: f'(x) = 2x