This foundational topic introduces essential calculus formulas and rules used throughout the subject. Whether you're evaluating limits, computing derivatives, or applying integrals, these core concepts form the building blocks for understanding and mastering calculus.
(a + b)^2 = a^2 + 2ab + b^2
; (a - b)^2 = a^2 - 2ab + b^2
a^2 - b^2 = (a - b)(a + b)
sin^2 x + cos^2 x = 1
; tan^2 x + 1 = sec^2 x
ln(ab) = ln a + ln b
; ln(a^n) = n ln a
\lim_{x \to a} c = c
; \lim_{x \to a} x = a
0/0
, ∞/∞
\frac{d}{dx}(x^n) = nx^{n-1}
\frac{d}{dx}(\sin x) = \cos x
; \frac{d}{dx}(\cos x) = -\sin x
\frac{d}{dx}(e^x) = e^x
; \frac{d}{dx}(\ln x) = 1/x
(fg)' = f'g + fg'
(f/g)' = (f'g - fg') / g^2
\frac{d}{dx} f(g(x)) = f'(g(x))g'(x)
\int x^n dx = \frac{x^{n+1}}{n+1} + C
\int \frac{1}{x} dx = \ln|x| + C
\int e^x dx = e^x + C
; \int \sin x dx = -\cos x + C
u
-substitution to reverse chain rule patterns\int_a^b f'(x) dx = f(b) - f(a)
\frac{d}{dx} \int_a^x f(t) dt = f(x)
\frac{1}{b-a} \int_a^b f(x) dx
\int_a^b [f(x) - g(x)] dx
x^n
, sin x
, and e^x
, you'll spot their integrals more easily. Build fluency through repetition.
f(x) = 3x^2 + 5x - 7
Step 1: Use the power rule: \frac{d}{dx}(x^n) = nx^{n-1}
Step 2: Differentiate each term:
\frac{d}{dx}(3x^2) = 6x
\frac{d}{dx}(5x) = 5
\frac{d}{dx}(-7) = 0
Final Answer: f'(x) = 6x + 5
\int_1^3 (2x) dx
Step 1: Find the antiderivative of 2x
: \int 2x dx = x^2 + C
Step 2: Apply the limits: F(3) - F(1) = 9 - 1 = 8
Final Answer: 8